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Scattering matrix in R

Recall the scattering matrix in R. At frequency λ and |x | � 1, the solution of

(PV − λ2)u = 0

is
u(x) = bsgn xe

−iλ|x| + asgn xe
iλ|x|

and the scattering matrix S(λ) is defined by

S(λ)(b+, b−) = (a−, a+),

i.e. S(λ) maps the amplitudes of incoming waves to amplitudes of outgoing waves.
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Scattering matrix in R

In other words, for θ, ω ∈ S0 = {+,−} and δ the delta mass on S0,

(S(λ)δω)(θ) = δω(θ) + vωθ (λ)

where
v±sgn x(λ) = −e−iλ|x|RV (λ)(Ve±iλ•)(x)

are the reflection and transmission coefficients, which don’t depend on x since
they expand as a Wronskian. Thus S(λ) acts on `2(S0) ∼= C2.

We generalize this to nD, n ≥ 3 odd, by defining S(λ) to be an operator on
L2(Sn−1).
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Scattering matrix in Rn

Let λ ∈ R \ 0. Let

u(x , λ, ω) = −RV (λ)(Ve−iλ〈•,ω〉)(x)

be the outgoing part of the eigenfunction w(x , λ, ω) = e−iλ〈x,ω〉 + u(x , λ, ω) of
PV of frequency λ. Here ω ∈ Sn−1. Recall from James’ talk:

Lemma (outgoing solutions asymptotics)

Let f be a compactly supported distribution, (PV − λ2)u = f , V ∈ L∞c (Rn → R),
n ≥ 3 odd, λ ∈ R \ 0. Then u is outgoing if and only if there is a function b such
that

u(rθ, λ, ω) = c−n (λr)−(n−1)/2e iλrb(λ, θ, ω) + O(r−(n+1)/2)

We call b(λ, θ, ω) the scattering amplitude of u in the directions θ, ω and at
frequency λ. The point is that b(λ, θ, ω) does not depend on r .
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Scattering matrix in Rn

Recall from James’ talk:

Lemma (stationary phase on the sphere)

If λ ∈ R \ 0, then as r →∞,

e−iλ〈rθ,ω〉 ∼ (rλ)−(n−1)/2
(
c+n e

−irλδω(θ) + c−n e irλδ−ω(θ)
)
.

Plugging everything in, we see that

w(rθ, λ, ω) ∼ c+n

(λr)
n−1
2

(
e−iλrδω(θ) + e iλr i1−n(δ−ω(θ) + b(λ, θ, ω)

)
where the e−iλr term is incoming and the e iλr term is outgoing. Define the
absolute scattering matrix Sabs(λ)δω(θ) = i1−n(δ−ω(θ) + b(λ, θ, ω))) to map the
incoming amplitude to the outgoing amplitude. This is annoying to write so we
normalize the scattering matrix as

S(λ)δω(θ) = δω(θ) + b(λ, θ,−ω).
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Scattering matrix action on L2

Theorem

Let n ≥ 3 odd, V ∈ L∞c (Rn → R), λ not a resonance of V . Then S(λ) acts on
L2(Sn−1) by

S(λ)f (θ) = f (θ) +

∫
Sn−1

b(λ, θ,−ω)f (ω) dω.

To prove this, fix ρ and recall from Izak’s talk that Eρ(λ, ω, x) = ρ(x)e−iλ〈x,ω〉 is
an integral operator L2(Rn)→ L2(Sn−1).

Lemma

With hypotheses as above, an = (2π)1−n/2, and

A(λ) = anλ
n−2Eρ(λ)(1 + VR0(λ)ρ)−1VEρ(λ)∗,

one has S = 1 + A.

This lemma shows that the definition of S(λ) extends to λ ∈ C.
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Scattering matrix action on L2

Proof

Recall from Yonah’s talk that if λ is not a resonance, then 1 + VR0(λ)ρ is
invertible on L2(Rn). Since Eρ(λ) conjugates L2(Rn) to L2(Sn−1) and assuming
the lemma we have

S(λ) = 1 + anλ
n−2Eρ(λ)(1 + VR0(λ)ρ)−1VEρ(λ)∗,

so S(λ) is a bounded operator on L2(Rn). This justifies the computation

S(λ)f (θ) = S(λ)

∫
Sn−1

δω(θ)f (ω) dω

=

∫
Sn−1

(δω(θ) + b(λ, θ,−ω))f (ω) dω

= f (θ) +

∫
Sn−1

b(λ, θ,−ω)f (ω) dω

which proves the theorem.
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Scattering matrix action on L2

Proof of Lemma

Recall that
u(x , λ, ω) = −RV (λ)Ve−iλ〈•,ω〉(x)

is the outgoing part of the eigenfunction w . Recall also that

RV (λ)ρ = R0(λ)ρ(1 + VR0(λ)ρ)−1,

and V = ρV , so u = R0(λ)f where

f (x) = −(1 + VR0(λ)ρ)−1Ve−iλ〈•,ω〉(x).

Now recall from Haoren’s talk:

Sublemma (Asymptotics of the outgoing part)

Let n ≥ 3 odd, f a Schwartz function on Rn, λ ∈ R, λ 6= 0. Then

R0(λ)f (rθ) = e iλr r−
n−1
2

(
1

4π

(
λ

2πi

)(n−3)/2

f̂ (λθ) + O(r−1)

)
.
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Scattering matrix action on L2

Proof of Lemma

Assume without loss of generality that f is Schwartz. Since u = R0(λ)f and

u(rθ, λ, ω) = c−n (λr)−
n−1
2 e iλrb(λ, θ, ω) + O(r−

n+1
2 ),

and the sublemma gives a formula for the highest-order term b of u,

b(λ, θ, ω) = − 1

4πc−n

λn−2

(2πi)
n−3
2

f̂ (λθ)

=
λn−2

(2π)n−1(2i)

∫
Rn

e−iλ〈x,θ〉(1 + VR0(λ)ρ)−1Ve−iλ〈•,ω〉(x) dx

so b is the integral kernel of

A(λ) = anλ
n−2Eρ(λ)(1 + VR0(λ)ρ)−1VEρ(λ)∗.

This proves the lemma.
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Solutions of prescribed incoming part

We now claim that S(λ) really is the scattering matrix, in the sense that it maps
any incoming wave to an outgoing wave.

Theorem

Suppose that V ∈ L∞c (Rn → R), λ ∈ R \ 0, n ≥ 3. For every g ∈ C∞(Sn−1) there
is a unique f ∈ C∞(Sn−1) and a unique eigenfunction v ∈ H2

loc(Rn) such that

(PV − λ2)v = 0,

and
v(rθ) = r−

n−1
2

(
e iλr f (θ) + e−iλrg(θ)

)
+ O(r−(n+1)/2).

For such f , g,
S(λ)g(θ) = in−1f (−θ).

So f , g are the outgoing and incoming amplitudes of v , respectively.
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Solutions of prescribed incoming part
Proof: Existence

Let bn = 1/c+n ,

u0(x) = bnλ
(n−1)/2

∫
Sn−1

g(θ)e−iλ〈x,θ〉 dθ.

By the stationary phase lemma,

u0(rω) ∼ r−(n−1)/2(e−iλrg(ω) + e−π(n−1)i/2e iλrg(−ω)).

and moreover ∆u0 = λ2u0. Now let v = u0 − RV (λ)(Vu0). Then

PV v = PV u0 − PVRV (λ)(Vu0) = Vu0 − Vu0 + λ2v .

Therefore v is an eigenfunction. The definition of S implies that S maps g to the
outgoing part of v .
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Solutions of prescribed incoming part
Proof: Uniqueness

Recall from James’ talk:

Lemma (Rellich’s theorem for the Sommerfeld radiation condition)

If P = −∆ close to infinity, Pu = λ2u, λ > 0, u ∈ H2
loc , and

(∂r − iλ)u(rω) = O(r−(n+1)/2),

then u = 0 close to infinity.

If v , v ′ meet the criteria of the theorem, then

(v − v ′)(rω) = O(r−(n+1)/2)

and this remains true when we apply the operator ∂r − iλ to v − v ′. So v − v ′ = 0.
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Unitarity of scattering matrix

Theorem

Let V ∈ L∞c (Rn → C), n ≥ 3 odd. Let Jf (θ) = f (−θ), λ ∈ C. Then:

X S is a meromorphic family of operators on C with poles of finite rank.

X There are finitely many poles in the closed upper-half plane.

X If λ is a pole and Imλ > 0, then λ2 ∈ SpecPV .

X S(λ)−1 = JS(λ)J.

X If V is real, then S(λ)−1 = S(λ)∗.

X If V is real, then S is an analytic family of unitary operators on R.

The interpretation is that the poles of S are resonances of V and (if V is real, i.e.
the Hamiltonian PV is observable) then if an observer at infinity observes a particle
hit the edge of supp V (and hence the observer forces a wavefunction collapse),

Pr(particle reflects) + Pr(particle passes through) = 1.
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Unitarity of scattering matrix
Proof of meromorphy criteria

First three claims are easy! Recall that

S(λ) = 1 + anλ
n−1Eρ(λ)(1 + VR0(λ)ρ)−1VEρ(λ)∗.

Since (1 + VR0(λ)ρ)−1 is a factor of the meromorphic family of operators RV (λ)
and Eρ(λ) is a holomorphic family of operators (hence so is Eρ(λ)∗), S is a
meromorphic family of operators. The criteria on poles of positive imaginary part
follow from facts about RV .
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Unitarity of scattering matrix
Proof that S−1 = JSJ

Since Sabs maps incoming amplitudes (those of frequency λ) to outgoing
amplitudes (those of frequency −λ), we clearly have Sabs(λ)−1 = Sabs(−λ), say if
λ > 0 (and hence for any λ by meromorphic continuation). Since

S(λ) = in−1Sabs(λ)J

and n is odd,
S(−λ) = in−1Sabs(λ)−1J = JS(λ)−1J.
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Unitarity of scattering matrix
Proof of unitarity criteria

Assume that V is real. By meromorphy it suffices to show that if λ ∈ R then
S(λ) is unitary. (In particular, ||S(λ)||L2→L2 = 1, so by continuity there are no
poles close to λ.) Recall from James’ talk:

Lemma (boundary pairing)

Let P be a self-adjoint operator such that P = −∆ at infinity. Let u` ∈ H2
loc ,

(P − λ2)u` = F`, g` the incoming amplitude of u`, f` the outgoing amplitude of
u`. Then

2iλ

∫
Sn−1

g1g2 − f1f 2 =

∫
Rn

F1u2 − u1F 2.

We apply the boundary pairing lemma with P = PV , f = Sabs(λ)g , F = 0,
u = u1 = u2 to see that 2iλ(||g ||2L2 − ||f ||2L2) = 0 and conclude that Sabs(λ) is
unitary. This proves the theorem.
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Scattering matrix of a black box Hamiltonian

We now consider a black box Hamiltonian. That is, we do not assume that we
know V , only the Hamiltonian P = PV .

Definition (preliminary)

An unbounded self-adjoint operator P acting on a dense subspace of L2(Rn) is
called a black box Hamiltonian if there is a compact set K ⊂ Rn, the support of
P, such that 1K (P + i)−1 is compact, and for every u ∈ H2

c (Rn \ K ),

Pu = −∆u.

From this we can define the resolvent R(λ) = (P − λ2)−1.
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Scattering matrix of a black box Hamiltonian

Theorem

Suppose that P = PV for some V ∈ L∞c (Rn), n ≥ 3 odd. Assume that χ1, χ2 are
cutoffs, V supported in {χ1 = 1}, χ1 supported in {χ2 = 1}, χ2 supported in
{ρ = 1}. Then

S(λ) = 1 + anλ
n−2Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ)∗.

One can check that the choice of cutoffs doesn’t matter. Thus, if P is a black box
Hamiltonian, we may take this formula as the definition of the scattering matrix of
P, provided that n ≥ 3 is odd, and the support of P is contained in {χ1 = 1}.
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Scattering matrix of a black box Hamiltonian
Proof

By meromorphy we may assume that λ ∈ R \ 0. Let

E (λ, x , ω) = e−iλ〈x,ω〉

be an integral operator L2c(Rn)→ L2(Sn−1). Let h1, h2 ∈ C∞(Sn−1) be given. Let

u1 = ((1− χ2)E (λ)∗ − RV (λ)[∆, χ2]Eρ(λ)∗)h1,

u2 = (1− χ1)E (λ)∗h2.

Let Fj = (PV − λ2)uj . We claim

F1 = 0,

F2 = [∆, χ1]Eρ(λ)∗h2.
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Scattering matrix of a black box Hamiltonian
Proof: Computation of F

First observe that since V = 0 when χj 6= 1,

(PV − λ2)(1− χj)E (λ)∗ = (−∆− λ2)(1− χj)E (λ)∗

= (1− χj)(−∆− λ2)E (λ)∗ + [∆, χj ]E (λ)∗.

Since E (λ)∗ returns eigenfunctions of ∆ at frequency λ and ρ(x) = 1 for all
relevant x , this implies

(PV − λ2)(1− χj)E (λ)∗ = [∆, χj ]Eρ(λ)∗.

This immediately implies the claim for F2, and since V = 0 when χ2 6= 1,

F1 = ([∆, χ2]Eρ(λ)∗ − RV (λ)[∆, χ2]Eρ(λ)∗)h1

= (1− R0(λ))[∆, χ2]Eρ(λ)∗h1 = 0.

The last line follows because [∆, χ2]E (λ)∗ returns eigenfunctions at frequency λ,
so R0(λ) is the identity.
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Scattering matrix of a black box Hamiltonian
Proof: Computation of boundary pairing

Recall (1− χ2)[∆, χ1] = 0 (since χ2 = 1 on suppχ1) and [∆, χ1]∗ = −[∆, χ1]
(since ∆, χ1 are self-adjoint). It follows that

u1F 2 = ((1− χ2)E (λ)∗h1 − RV (λ)[∆, χ2]Eρ(λ)∗h1)([∆, χ1]Eρ(λ)∗h2)

= −(RV (λ)[∆, χ2]Eρ(λ)∗h1)([∆, χ1]Eρ(λ)∗h2).

Let 〈·, ·〉X be the inner product of L2(X ). Then

−〈u1,F2〉Rn = 〈RV (λ)[∆, χ2]Eρ(λ)∗h1, [∆, χ1]Eρ(λ)∗h2〉Rn

= −〈Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ)∗h1, h2〉Sn−1

= 〈G (λ)h1, h2〉Sn−1

where G (λ) = Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ)∗.
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Scattering matrix of a black box Hamiltonian
Proof: Decomposition of u1

Now
u1 = ((1− χ2)E (λ)∗ − RV (λ)[∆, χ2]Eρ(λ)∗)h1

and RV is the outgoing resolvent, so the incoming part of u1 is equal to the
incoming part of (1− χ2)E (λ)∗h1, which is equal to the incoming part of

E (λ)∗h1(x) =

∫
Sn−1

e iλ〈x,ω〉h1(ω) dω.

Applying the stationary phase lemma, we see that the incoming part of E (λ)∗h1 is

g1(θ) = c−n λ
−(n−1)/2h1(−θ).

Therefore, by definition of S(λ), the outgoing part of u1 is

f1(θ) = c−n i1−nλ−(n−1)/2S(λ)h1(θ).
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Scattering matrix of a black box Hamiltonian
Proof: Decomposition of u2

Since
u2 = E (λ)∗h2

close to infinity, we can apply the stationary phase lemma to E (λ)∗h2 to see that

g2(θ) = c−n λ
−(n−1)/2h2(−θ)

and
f2(θ) = c−n λ

−(n−1)/2i1−nh2(θ).

Notice that we did not use the scattering matrix to recover f2 from g2. This will be
important when every term cancels out except S(λ) and the terms that we want.
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Scattering matrix of a black box Hamiltonian
Proof: Comparing boundary pairings

By the boundary pairing lemma,∫
Rn

F1u2 − u1F 2 = 2iλ(〈g1, g2〉Sn−1 − 〈f1, f2〉Sn−1)

= 〈2iλ2−n(2π)n−1(1− S(λ))h1, h2〉Sn−1 .

On the other hand, F1 = 0, so∫
Rn

F1u2 − u1F 2 = −〈u1,F2〉Rn = 〈G (λ)h1, h2〉Sn−1 .

Since h1, h2 were arbitrary we must have

2iλ2−n(2π)n−1(1− S(λ)) = G (λ).

Since G (λ) = Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ)∗, we can solve for S(λ) to
complete the proof.
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Multiplicity of poles

Recall that mR(λ) is the multiplicity of the resonance λ as a pole of the scattering
resolvent. There is another way to define resonance multiplicity: Let

mS(λ) = − 1

2πi
tr

∮
λ

S(ζ)−1∂ζS(ζ) dζ.

To interpret this quantity we may use (log det S)′ = tr(S−1S ′), and recall the
argument principle: so we are really counting the zeroes and poles of det S .

Theorem

Let V ∈ L∞c (Rn), n ≥ 3 odd. Then mS(λ) = mR(λ)−mR(−λ).
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Multiplicity of poles
Proof: Reduction to nonzero simple poles

Lemma

Without loss of generality, we may assume that RV only has simple poles.

The idea behind the proof of the lemma is that the zeroes and poles of det S(λ)
depend continuously on V in compact sets, because if ||V − V ′||L2→L2 is small
then 1 + VR0(λ)ρ is invertible iff 1 + V ′R0(λ)ρ is invertible. We omit the details.
Regardless of what mR(0) is, mR(0)−mR(−0) = 0. But the formula for a black
box Hamiltonian’s scattering matrix says that

S(0) = 1 + an0n−2Eρ(0)[∆, χ1]RV (0)[∆, χ2]Eρ(0)∗ = 1,

so mS(0) = 0.
If RV is holomorphic at λ then 1 + VR0(λ)ρ is invertible, so mS(λ) = 0.
So we may assume that λ 6= 0 is a simple pole of RV , and must prove that
mR(λ)−mR(−λ) = mS(λ).
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Multiplicity of poles
Proof: Residue of the scattering matrix

Recall from Haoren’s talk:

Lemma (singular part of the resolvent, simple case)

If mR(λ) = 1 and λ 6= 0 then there is an eigenfunction u ∈ H2
loc such that

PV u = λ2u and Res(RV , λ) = u ⊗ u.

Let Uj(θ) = Eρ(λ)[∆, χj ]u. By the formula for the scattering matrix of a black
box Hamiltonian, modulo holomorphic terms,

S(ζ) = anλ
n−2Eρ(λ)[∆, χ1]

u ⊗ u

λ− ζ
[∆, χ2]Eρ(λ)∗

=
anλ

n−2

λ− ζ
Eρ(λ)[∆, χ1]u ⊗ [∆, χ2]∗Eρ(λ)∗u

= −anλ
n−2U1 ⊗ U2

λ− ζ

so Res(S , λ) = −U1 ⊗ U2.
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Multiplicity of poles
Proof: Fourier analytic computations

Lemma

Let U(θ) = V̂u(θλ). Then U = U1 = U2. Moreover, U 6= 0.

Since u is an eigenfunction, [∆, χj ]u = ∆χju − χj∆u = (∆ + λ2)χju + Vu. But

Eρ(λ)[∆, χj ]u(θ) =

∫
Rn

e−iλ〈θ,x〉((∆ + λ2)(χju)(x) + V (x)u(x)) dx

= (λ2 − |θλ|2)χ̂ju(θλ) + V̂u(θλ) = U(θ).

This proves U1 = U2 = U. If U is identically 0 then we proceed as in the proof of
Rellich’s theorem. First we use Paley-Wiener theory to show that u has compact
support. We then use Carleman estimates to show that u = 0, a contradiction.
We omit the details. This proves the lemma.
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Multiplicity of poles
Proof: Gohberg-Segal factorization

Lemma (Theorem C.10)

Let A be a meromorphic family of Fredholm operators on a Riemann surface Ω,
and let µ ∈ Ω. If the Fredholm index of the holomorphic part of A is 0 near µ,
then there are holomorphic families of invertible operators U,V near µ, finitely
many operators Pm such that if m 6= 0 then rankPm ≤ 1, and that

A(λ) = U(λ)(P0 +
∑
m 6=0

(λ− µ)mPm)V (λ).

By the Fourier analysis lemma, there is a simple pole of S at λ. So by Theorem
C.10, there are δ > 0 and operators such that

S(ζ) = G (ζ)(Q−1(λ− ζ)−1 + Q0 + Q1(λ− ζ) + · · · )F (ζ), |λ− ζ| < δ

S(−ζ) = G̃ (ζ)(Q̃−1(λ− ζ)−1 + Q̃0 + Q̃1(λ− ζ) + · · · )F̃ (ζ), |λ+ ζ| < δ.
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Multiplicity of poles
Proof: Comparing ranks of Gohberg-Segal factors

We proved that

S(ζ) = G (ζ)(Q−1(λ− ζ)−1 + Q0 + Q1(λ− ζ) + · · · )F (ζ), |λ− ζ| < δ

S(−ζ) = G̃ (ζ)(Q̃−1(λ− ζ)−1 + Q̃0 + Q̃1(λ− ζ) + · · · )F̃ (ζ), |λ+ ζ| < δ.

In fact rank Q̃−1 = 1 iff −λ is a simple pole, and rank Q̃−1 = 0 otherwise; that is,

rank Q̃−1 = mR(−λ). We already know that rankQ−1 = 1 = mR(λ). Moreover,

S(−ζ) = JS(ζ)−1J

= JF (ζ)−1(Q−1(λ− ζ) + Q0 + Q1(λ− ζ)−1 + · · · )G (ζ)−1J.

Comparing like terms we see that Q−1 = Q̃1 and Q̃−1 = Q1. So

mS(λ) = rankQ−1 − rankQ1 = rankQ−1 − rank Q̃−1 = mR(λ)−mR(−λ).

This proves the theorem.

Aidan Backus The scattering matrix June 25, 2020 30 / 30


